top of page

PUBLICATIONS

Screen Shot 2020-08-27 at 6.22.36 PM.png

​For the most current list of Truman lab papers, please see here:

​

  1. Mirikar D, Bushman Y, Truman AW* (2024). Structural transitions modulate the chaperone activities of Grp94. Trends Biochem Sci. Epub 20240620. doi: 10.1016/j.tibs.2024.06.007. PubMed PMID: 38906726

  2. Bourboulia D, Blair LJ, Clark MS, Edkins AL, Hightower LE, Mollapour M, Prahlad V, Repasky EA, Truebano M, Truman A.W., Truttmann MC, van Oosten-Hawle P, Woodford MR. (2024). "Editorial: A New Chapter for Cell Stress and Chaperones." Cell Stress Chaperones. https://dx.doi.org/10.1016/j.cstres.2024.01.007.

  3. Buchner J, Alasady MJ, Backe SJ, Blagg BS, Carpenter RL, Colombo G, Gelis I, Gewirth DT, Gierasch LM, Houry WA, Johnson JL, Kang BH, Kao AW, LaPointe P, Mattoo S, McClellan AJ, Neckers LM, Prodromou C, Rasola A, Sager RA, Theodoraki MA, Truman AW, Truttman MC, Zachara NE, Bourboulia D, Mollapour M, Woodford MR. (2024). "2nd International Symposium on the Chaperone Code, 2023." Cell Stress Chaperones. https://dx.doi.org/10.1016/j.cstres.2024.01.003.

  4. Mitchem M.M. †, Shrader C. †, Abedi E., Truman A.W.* (2024). Novel insights into the post-translational modifications of Ydj1/DNAJA1 co-chaperones. Cell Stress Chaperones 29, 1-9. 10.1016/j.cstres.2023.11.001.

  5. Omkar, S†., A. Rysbayeva‡, and Truman AW* (2023). Understanding chaperone specificity: evidence for a 'client code'. Trends Biochem Sci, 2023. 48(8): p. 662-664.

  6. Davis JA, Reyes AV, Nitika, Saha A, Wolfgeher DJ, Xu SL, et al. Proteomic analysis defines the interactome of telomerase in the protozoan parasite, Trypanosoma brucei. Front Cell Dev Biol. 2023;11:1110423. doi: 10.3389/fcell.2023.1110423.

  7. van Oosten-Hawle P, Backe SJ, Ben-Zvi A, Bourboulia D, Brancaccio M, Brodsky J, Clark M, Colombo G, Cox MB, De Los Rios P, Echtenkamp F, Edkins A, Freeman B, Goloubinoff P, Houry W, Johnson J, LaPointe P, Li W, Mezger V, Neckers L, Nillegoda NB, Prahlad V, Reitzel A, Scherz-Shouval R, Sistonen L, Tsai FTF, Woodford MR, Mollapour M, Truman AW*. (2023). Second Virtual International Symposium on Cellular and Organismal Stress Responses, September 8-9, 2022. Cell Stress Chaperones. Epub 20230105. doi: 10.1007/s12192-022-01318-5.

  8. Nitika, Zheng B, Ruan L, Kline JT, Omkar, S., Sikora J, Torres MT, Wang Y, Takakuwa JE, Huguet R, Klemm C, Segarra VA, Winters MJ, Pryciak PM, Thorpe PH, Tatebayashi K, Li R, Fornelli L and Truman A.W. Comprehensive characterization of the Hsp70 interactome reveals novel client proteins and interactions mediated by post-translational modifications. PLoS Biology. (Published 21 Oct 2022): [PDF]

  9. Okusha Y, Guerrero-Gimenez ME, Lang BJ, Borges TJ, Stevenson MA, Truman AW, Calderwood SK. (2022). MicroRNA-570 targets the HSP chaperone network, increases proteotoxic stress and inhibits mammary tumor cell migration. Sci Rep 12(1):15582.

  10. Omkar, S., Wani, T.H., Zheng, B., Mitchem, M.M. and Truman, A.W.* (2022) The APE2 Exonuclease Is a Client of the Hsp70-Hsp90 Axis in Yeast and Mammalian Cells. Biomolecules, 12. doi: 10.3390/biom12070864

  11. Omkar S†, Truman A.W.* (2022). Feeling the heat: how chaperones deal with biomolecular condensates. Trends Biochem Sci. 2022. Epub 2022/05/01. doi: 10.1016/j.tibs.2022.04.008.

  12. Knighton, L.E., Nitika, Omkar, S., and Truman, A.W. (2022). The C-terminal domain of Hsp70 is responsible for paralog-specific regulation of ribonucleotide reductase. PLoS Genet 18, e1010079.

  13. Millson, S.H., Truman, A.W., and Piper, P.W. (2022). Hsp90 and phosphorylation of the Slt2(Mpk1) MAP kinase activation loop are essential for catalytic, but not non-catalytic, Slt2-mediated transcription in yeast. Cell Stress Chaperones.

  14. Knighton, L.E., Nitika, Wani, T.H., and Truman, A.W. (2022). Chemogenomic and bioinformatic profiling of ERdj paralogs underpins their unique roles in cancer. Cell Stress Chaperones. [PDF].

  15. Goyal, S., Segarra, V.A., Nitika, Stetcher, A.M., Truman, A.W., Reitzel, A.M., and Chi, R.J. (2022). Vps501, a novel vacuolar SNX-BAR protein cooperates with the SEA complex to regulate TORC1 signaling. Traffic. [PDF]

  16. van Oosten-Hawle, P., Bergink, S., Blagg, B., Brodsky, J., Edkins, A., Freeman, B., Genest, O., Hendershot, L., Kampinga, H., Johnson, J. et al. (2021) First Virtual International Congress on Cellular and Organismal Stress Responses, November 5-6, 2020. Cell Stress Chaperones, 26, 289-295. [PDF]

  17. Truman, A.W., Bourboulia, D. and Mollapour, M. (2021) Decrypting the chaperone code. J Biol Chem, 296, 100293. [PDF].

  18. Truman, A.W. (2021) Dealing with difficult clients via personalized chaperone inhibitors. J Biol Chem, 296, 100211 [PDF].

  19. Nitika, Blackman, J.S., Knighton, L.E., Takakuwa, J.E., Calderwood, S.K. and Truman, A.W. (2020) Chemogenomic screening identifies the Hsp70 co-chaperone DNAJA1 as a hub for anticancer drug resistance. Sci Rep, 10, 13831. [PDF]

  20. Weissman, Z., Pinsky, M., Wolfgeher, D.J., Kron, S.J., Truman, A.W. and Kornitzer, D. (2020) Genetic analysis of Hsp70 phosphorylation sites reveals a role in Candida albicans cell and colony morphogenesis. Biochim Biophys Acta Proteins Proteom, 1868, 140135. [PDF]

  21. Rigo, M.M., Borges, T.J., Lang, B.J., Murshid, A., Nitika, Wolfgeher, D., Calderwood, S.K., Truman, A.W. and Bonorino, C. (2020) Host expression system modulates recombinant Hsp70 activity through post-translational modifications. FEBS J. [PDF]

  22. Nitika, Porter, C.M., Truman, A.W. and Truttmann, M.C. (2020) Post-translational modifications of Hsp70 family proteins: Expanding the chaperone code. J Biol Chem. [PDF]

  23. Jeffries, A.M., Nitika, Truman, A.W. and Marriott, I. (2020) The intracellular DNA sensors cGAS and IFI16 do not mediate effective antiviral immune responses to HSV-1 in human microglial cells. J Neurovirol. [PDF]

  24. Xu, L., Nitika, Hasin, N., Cuskelly, D.D., Wolfgeher, D., Doyle, S., Moynagh, P., Perrett, S., Jones, G.W. and Truman, A.W. (2019) Rapid deacetylation of yeast Hsp70 mediates the cellular response to heat stress. Sci Rep, 9, 16260. [PDF]

  25. Takakuwa, J.E., Nitika, Knighton, L.E. and Truman, A.W. (2019) Oligomerization of Hsp70: Current Perspectives on Regulation and Function. Front Mol Biosci, 6, 81.  [PDF]

  26. Ricco, N., Flor, A., Wolfgeher, D., Efimova, E.V., Ramamurthy, A., Appelbe, O.K., Brinkman, J., Truman, A.W., Spiotto, M.T. and Kron, S.J. (2019) Mevalonate pathway activity as a determinant of radiation sensitivity in head and neck cancer. Mol Oncol, 13, 1927-1943. [PDF]

  27.  Lotz, S.K., Knighton, L.E., Nitika, Jones, G.W. and Truman, A.W. (2019) Not quite the SSAme: unique roles for the yeast cytosolic Hsp70s. Curr Genet, 65, 1127-1134. [PDF]

  28. Knighton, L.E.T., A. W. (2019) Heat Shock Proteins in Signaling Pathways, Vol. 17, pp. 345-358. [PDF]

  29. Knighton, L.E., Saa, L.P., Reitzel, A.M. and Truman, A.W. (2019) Analyzing the Functionality of Non-native Hsp70 Proteins in Saccharomyces cerevisiae. Bio Protoc, 9. [PDF]

  30. Knighton, L.E., Nitika, Wolfgeher, D., Reitzel, A.M. and Truman, A.W. (2019) Dataset of Nematostella vectensis Hsp70 isoform interactomes upon heat shock. Data Brief, 27, 104580. [PDF]

  31. Knighton, L.E., Nitika, Waller, S.J., Strom, O., Wolfgeher, D., Reitzel, A.M. and Truman, A.W. (2019) Dynamic remodeling of the interactomes of Nematostella vectensis Hsp70 isoforms under heat shock. J Proteomics, 206, 103416. [PDF]

  32. Knighton, L.E., Delgado, L.E. and Truman, A.W. (2019) Novel insights into molecular chaperone regulation of ribonucleotide reductase. Curr Genet, 65, 477-482. [PDF]

  33. Waller, S.J., Knighton, L.E., Crabtree, L.M., Perkins, A.L., Reitzel, A.M. and Truman, A.W. (2018) Characterizing functional differences in sea anemone Hsp70 isoforms using budding yeast. Cell Stress Chaperones, 23, 933-941.  [PDF]​

  34. Sluder, I.T., Nitika, Knighton, L.E. and Truman, A.W. (2018) The Hsp70 co-chaperone Ydj1/HDJ2 regulates ribonucleotide reductase activity. PLoS Genet, 14, e1007462.

  35. Nitika and Truman, A.W. (2018) Endogenous epitope tagging of heat shock protein 70 isoform Hsc70 using CRISPR/Cas9. Cell Stress Chaperones, 23, 347-355. [PDF]​

  36. Nitika and Truman, A.W. (2017) Cracking the Chaperone Code: Cellular Roles for Hsp70 Phosphorylation. Trends Biochem Sci, 42, 932-935. [PDF]​

  37. Dushukyan, N., Dunn, D.M., Sager, R.A., Woodford, M.R., Loiselle, D.R., Daneshvar, M., Baker-Williams, A.J., Chisholm, J.D., Truman, A.W., Vaughan, C.K. et al. (2017) Phosphorylation and Ubiquitination Regulate Protein Phosphatase 5 Activity and Its Prosurvival Role in Kidney Cancer. Cell Rep, 21, 1883-1895.

  38. Woodford, M.R., Truman, A.W., Dunn, D.M., Jensen, S.M., Cotran, R., Bullard, R., Abouelleil, M., Beebe, K., Wolfgeher, D., Wierzbicki, S. et al. (2016) Mps1 Mediated Phosphorylation of Hsp90 Confers Renal Cell Carcinoma Sensitivity and Selectivity to Hsp90 Inhibitors. Cell Rep, 14, 872-884.

  39. Wolfgeher, D., Dunn, D.M., Woodford, M.R., Bourboulia, D., Bratslavsky, G., Mollapour, M., Kron, S.J. and Truman, A.W. (2015) The dynamic interactome of human Aha1 upon Y223 phosphorylation. Data Brief, 5, 752-755.

  40. Truman, A.W., Kristjansdottir, K., Wolfgeher, D., Ricco, N., Mayampurath, A., Volchenboum, S.L., Clotet, J. and Kron, S.J. (2015) Quantitative proteomics of the yeast Hsp70/Hsp90 interactomes during DNA damage reveal chaperone-dependent regulation of ribonucleotide reductase. J Proteomics, 112, 285-300.

  41. Truman, A.W., Kristjansdottir, K., Wolfgeher, D., Ricco, N., Mayampurath, A., Volchenboum, S.L., Clotet, J. and Kron, S.J. (2015) The quantitative changes in the yeast Hsp70 and Hsp90 interactomes upon DNA damage. Data Brief, 2, 12-15.

  42. Dunn, D.M., Woodford, M.R., Truman, A.W., Jensen, S.M., Schulman, J., Caza, T., Remillard, T.C., Loiselle, D., Wolfgeher, D., Blagg, B.S. et al. (2015) c-Abl Mediated Tyrosine Phosphorylation of Aha1 Activates Its Co-chaperone Function in Cancer Cells. Cell Rep, 12, 1006-1018.

  43. Millson, S., van Oosten-Hawle, P., Alkuriji, M.A., Truman, A., Siderius, M. and Piper, P.W. (2014) Cdc37 engages in stable, S14A mutation-reinforced association with the most atypical member of the yeast kinome, Cdk-activating kinase (Cak1). Cell Stress Chaperones, 19, 695-703.

  44. Jimenez, J., Truman, A.W., Menoyo, S., Kron, S.J. and Clotet, J. (2013) The yin and yang of cyclin control by nutrients. Cell Cycle, 12, 865-866.

  45. Balogun, F.O., Truman, A.W. and Kron, S.J. (2013) DNA resection proteins Sgs1 and Exo1 are required for G1 checkpoint activation in budding yeast. DNA Repair (Amst), 12, 751-760.

  46. Truman, A.W.K., A. A.; Fitz Gerald, J. N.; Kron, S. J. (2012) Cell Cycle: Regulation by Cyclins. eLS.

  47. Truman, A.W., Kristjansdottir, K., Wolfgeher, D., Hasin, N., Polier, S., Zhang, H., Perrett, S., Prodromou, C., Jones, G.W. and Kron, S.J. (2012) CDK-dependent Hsp70 Phosphorylation controls G1 cyclin abundance and cell-cycle progression. Cell, 151, 1308-1318.

  48. Mollapour, M., Tsutsumi, S., Truman, A.W., Xu, W., Vaughan, C.K., Beebe, K., Konstantinova, A., Vourganti, S., Panaretou, B., Piper, P.W. et al. (2011) Threonine 22 phosphorylation attenuates Hsp90 interaction with cochaperones and affects its chaperone activity. Mol Cell, 41, 672-681.

  49. Rossetto, D., Truman, A.W., Kron, S.J. and Cote, J. (2010) Epigenetic modifications in double-strand break DNA damage signaling and repair. Clin Cancer Res, 16, 4543-4552.

  50. Kim, K.Y., Truman, A.W., Caesar, S., Schlenstedt, G. and Levin, D.E. (2010) Yeast Mpk1 cell wall integrity mitogen-activated protein kinase regulates nucleocytoplasmic shuttling of the Swi6 transcriptional regulator. Mol Biol Cell, 21, 1609-1619.

  51. Truman, A.W., Kim, K.Y. and Levin, D.E. (2009) Mechanism of Mpk1 mitogen-activated protein kinase binding to the Swi4 transcription factor and its regulation by a novel caffeine-induced phosphorylation. Mol Cell Biol, 29, 6449-6461.

  52. Vaughan, C.K., Mollapour, M., Smith, J.R., Truman, A., Hu, B., Good, V.M., Panaretou, B., Neckers, L., Clarke, P.A., Workman, P. et al. (2008) Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37. Mol Cell, 31, 886-895.

  53. Kim, K.Y., Truman, A.W. and Levin, D.E. (2008) Yeast Mpk1 mitogen-activated protein kinase activates transcription through Swi4/Swi6 by a noncatalytic mechanism that requires upstream signal. Mol Cell Biol, 28, 2579-2589.

  54. Truman, A.W., Millson, S.H., Nuttall, J.M., Mollapour, M., Prodromou, C. and Piper, P.W. (2007) In the yeast heat shock response, Hsf1-directed induction of Hsp90 facilitates the activation of the Slt2 (Mpk1) mitogen-activated protein kinase required for cell integrity. Eukaryot Cell, 6, 744-752.

  55. Millson, S.H., Truman, A.W., Racz, A., Hu, B., Panaretou, B., Nuttall, J., Mollapour, M., Soti, C. and Piper, P.W. (2007) Expressed as the sole Hsp90 of yeast, the alpha and beta isoforms of human Hsp90 differ with regard to their capacities for activation of certain client proteins, whereas only Hsp90beta generates sensitivity to the Hsp90 inhibitor radicicol. FEBS J, 274, 4453-4463.

  56. Truman, A.W., Millson, S.H., Nuttall, J.M., King, V., Mollapour, M., Prodromou, C., Pearl, L.H. and Piper, P.W. (2006) Expressed in the yeast Saccharomyces cerevisiae, human ERK5 is a client of the Hsp90 chaperone that complements loss of the Slt2p (Mpk1p) cell integrity stress-activated protein kinase. Eukaryot Cell, 5, 1914-1924.

  57. Piper, P.W., Truman, A.W., Millson, S.H. and Nuttall, J. (2006) Hsp90 chaperone control over transcriptional regulation by the yeast Slt2(Mpk1)p and human ERK5 mitogen-activated protein kinases (MAPKs). Biochem Soc Trans, 34, 783-785.

  58. Millson, S.H., Truman, A.W., King, V., Prodromou, C., Pearl, L.H. and Piper, P.W. (2005) A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryot Cell, 4, 849-860.

  59. Millson, S.H., Truman, A.W., Wolfram, F., King, V., Panaretou, B., Prodromou, C., Pearl, L.H. and Piper, P.W. (2004) Investigating the protein-protein interactions of the yeast Hsp90 chaperone system by two-hybrid analysis: potential uses and limitations of this approach. Cell Stress Chaperones, 9, 359-368.

  60. Piper, P.W., Panaretou, B., Millson, S.H., Truman, A., Mollapour, M., Pearl, L.H. and Prodromou, C. (2003) Yeast is selectively hypersensitised to heat shock protein 90 (Hsp90)-targetting drugs with heterologous expression of the human Hsp90beta, a property that can be exploited in screens for new Hsp90 chaperone inhibitors. Gene, 302, 165-170.

  61. Millson, S.H., Truman, A.W. and Piper, P.W. (2003) Vectors for N- or C-terminal positioning of the yeast Gal4p DNA binding or activator domains. Biotechniques, 35, 60-64.

bottom of page